粉體技術可以指粉狀物質的加工處理思路軟件和相關設備硬件的總成。自從人類社會的發端開始,粉體技術就與每個人息息相關,一刻也沒有離開過,只不過是每個人是否明確清晰地感覺到和識別出來而已。粉體技術作為一門綜合性技術,就是隨著人類文明的發展而逐漸形成的。從原始人學會制造石器粉碎食物開始,就出現了粉碎技術的雛形。通過對粉體技術的感知、認知的變化,我們可以從加工業的發展特點來形容粉體技術過程--「構思顆粒、分析構成、加工粉體、制造產品、現實設想」。
從石器時代到鐵器時代,粉體技術扮演著重要的角色,而系統整理這一系列技術的還是我國古代的《天工開物》一書,是它歸納分析形成粉體技術的雛形。西方工業革命對鋼鐵需求的快速增加,大規模地加工礦物粉體的相關工業已得到迅速地發展。針對粉體企業生產中出現的種種故障與危害,在物理和化學等學科不斷進步的推動下,20世紀50年代對粉體過程現象與粉體技術理論的研究應運而生。20世紀60年代理論研究與生產應用的結合與發展,確立了粉體工程學科的作用與重要性。20世紀70年代為解決粉體相關產業存在的問題以及對新產品的研發,奠定了現代粉體技術的基礎。
隨著粉體技術的不斷提高與積累以及微顆粒、超微顆粒材料制備與應用技術的發展,20世紀80年代粉體技術實現了超細化,相關理論也逐漸系統化;由于微顆粒、超微顆粒的行為與顆粒的行為差異較大,從而微顆粒、超微顆粒成為粉體科學重要的研究對象。20世紀90年代顯微測試技術和計算機技術的飛速發展,促進了納米粉體技術的誕生,納米材料制備與應用技術又賦予粉體工程新的挑戰和用武領域。21世紀顆粒微細化以及顆粒功能化與復合化的發展,為粉體技術在材料科學與工程領域的應用中開辟了新天地[5]:例如便于服用和可控溶解的緩釋藥物、延展性好不易脫落的化妝品、高生物利用度的超微粉體食品、高精度拋光的研磨粉、高純材料制備的電子元件和各類能源材料,為高性能粉體的使用開拓了廣闊的市場。
以粉體制備為例,古老的粉碎方式被粉碎(break-down)裝備替代,已經工業化的超細攪拌磨突破了制備微粉的"3μm"粉碎極限,實現了亞微米級超微粉碎。精細化是一個突出特色,英語中"Fineparticlemustbefine"這句雙關語的確說明了微細化與精細化的關系;超微顆粒的研究開發就是沿著這個方向發展的。以多尺度思想認識物質的結構,科技界已經將可操控的微顆粒尺度經歷了從微米到納米之后,正在向分子量級逼近;宏觀世界和微觀世界的界限逐漸模糊化。
隨著材料及相關產業的科技進步,作為工業原料精細化加工處理的粉體技術應用范圍也在不斷地拓展,單純的超細粉碎分級技術已經不能滿足對終端制品性能的要求。人們不僅要求粉體原料具有微納米級的超細粒度和理想的粒度分布,為了材料性能或粉體使用性能的提高,對粉體顆粒的成分、結構、形貌等也提出了日益嚴苛的要求。